
Home | Electronics | Tuxkid | E-cards | Linux & Computer stuff | Graphics, Film & Animation |
Photos | Online-Shop

A simple digital thermometer

Abstract:

This is an update of two articles which I wrote in 2005 about a small
digital thermometer. The circuit seems to be very popular because it is
so simple and still has a very useful and practical application. It is the
perfect circuit to get started with AVR microcontrollers.

This updated article replaces the articles from 2005 and simplifies the
software as well as the hardware. The original documents from 2005
are linked at the end of this article in case you still need them.

This thermometer can be used as a standalone thermometer with LCD
display or it can be read out with a PC running Linux, Windows,
MacOSX or solaris. BSD Unix and others are probably also possible
to use for reading the temperatures. No special drivers are needed.

Content:

Introduction
What is I2C?
How I2C/TWI works
The plan
The temperature
sensor
The circuit
Putting everything
together
Using the I2C
communication
How warm is it?
The LCD display
A little GUI
Makeing temperature
data available on the
web
How it works:
Analog to digital
conversion
How it works: I2C
communication,
Atmega8 part
How it works: I2C
communication,
Linux side
How to mount the
outdoor sensor
Conclusion
References

By Guido Socher
<guido_at_tuxgraphics.org>

The hardware described here can be ordered from
http://shop.tuxgraphics.org

_________________ _________________ _________________

Introduction

When you use such an advanced device as a microcontroller to measure analog or digital signals
then you want of course interfaces to evaluate the data or send commands to the microcontroller. In
all the articles presented here in the past we always used rs232 communication with the UART that
is included in the microcontroller. The problem is that this requires an additional MAX232 chip, 4
extra capacitors and an external crystal osciallator for the microcontroller. In any case it is a lot of
extra parts..... and we can avoid them!

We go here for connectivity via I2C because it is reliable and really easy to build. The amount of
data to transfer between PC and microcontroller is very small (just a few bytes). Speed is therefore
no issue at all.

The LCD display is optional. The software is written such that it is identical for the hardware with
and without the LCD display.

What is I2C?

I2C (prounouce "eye-square-see") is a two-wire bidirectional communication interface. It was
invented by Philips and they have protected this name. This is why other manufacturers use a
different name for the same protocol. Atmel calls I2C "two wire interface" (TWI).

Many of you might already be using I2C on their PCs without knowing it. All modern
motherboards have an I2C bus to read temperatures, fan speed, information about available
memory.... all kind of hardware information. This I2C bus is unfortunately not available on the
outside of the PC (there is no physical connector). Therefore we will have to use something else.

How I2C/TWI works

The datasheet of the Atmega8 (see references) has actually a very detailed description starting on
page 160. I will therefore present here just an overview. After this overview you will be able to
understand the description in the datasheet.

On the I2C bus you always have one master and one or several slave devices. The master is the
device that initiates the communication and controls the clock. The two wires of this bus are called
SDA (data line) and SCL (clock line). Each of the devices on the bus must be powered
independently (same as with traditional rs232 communication). The two lines of the bus are
normally connected via 4.7K pullup resistors to logically "High" (+5V for 5V ICs). This gives an
electrical "or" connection between all the devices. A device just puls a line to GND when it wants
to transmit a 0 or leaves it "High" when it sends a 1.

The master starts a communication by sending a pattern called "start condition" and then addresses
the device it wants to talk to. Each device on the bus has a 7 bit unique address. After that the
master sends a bit which indicates if it wants to read or write data. The slave will now acknowledge
that it has understood the master by sending an ack-bit. In other words we have now seen 9 bits of
data on the bus (7 address bits + read_bit + ack-bit):

| start | 7-bit slave adr | read_data bit | wait for ack | ... data comes here

What’s next?

Next we can receive or transmit data. Data is always a multiple of 8 bits (1 byte) and must be
acknowledged by an ack-bit. In other words we will always see 9-bit packets on the bus. When the
communication is over then the master must transmit a "stop condition". In other words the master
must know how much data will come when it reads data from a slave. This is however not a
problem since you can transmit this information inside the user protocol. We will e.g use the zero
byte at the end of a string to indicate that there is no more data.

The data on the SDA wire is valid while the SCL is 1. Like this:

SDA H -\ /---\ /---\ /---\
 L \-----/ \---/ \--------/ \------....

SCL H ----\ /-\ /-\ /-\ /-\ /-\
 L \---/ \-----/ \---/ \--/ \--/ \-....

 | START | 1 | 1 | 0 | 1 | 0 |

One of the best things about this protocol is that you do not need a precise and synchronous clock
signal. The protocol does still work when there is a little bit jitter in the clock signal.

Exactly this property makes it possible to implement the I2C protocol in a user space application
without the need for a kernel driver or special hardware (like a UART). Cool isn’t it?

The plan

As said before we cannot use the PCs internal I2C bus but we can use any external interface where
we can send and receive individual data bits. We will just use the RS232 hardware interface of our
PC. In other words our communication interface is RS232 but we save the MAX232 hardware,
capacitors, etc...

A USB to RS232 converter can be used if you PC does not have a RS232 port.

The LCD display is optional but if you add one then you can use this as well as a standalone
thermometer with local LCD display.

The temperature sensor

It is possible to get already calibrated temperature sensors (some of

It is possible to get already calibrated temperature sensors (some of
which talk I2C ;-) but they are quite expensive. NTCs are cheaper and
almost as good even without individual calibration. If you calibrate
them a bit then it is possible to achieve accuracy behind the decimal
point.

One problem with NTCs is that they are non linear. It is however just
a matter of semiconductor physics to find the right formula to correct
the non linear curve. The microcontroller is a little computer therefore
mathematical operations are not a problem. NTCs are temperature
dependent resistors. The value R of the NTC at a given temperature is:

T or Tc is the temperature value that we are looking for. Rn is the resistive value of the NTC at
25’C. You can buy 4k7, 10K, ... NTCs so Rn is this value.

The circuit

Most of the components are actually for the power supply part. We need a stable reference voltage
for the NTCs otherwise the temperature readings will not be accurate.

There is also an LED connected. It does not cost much and is really useful for basic debugging and
initial hardware test. The hardware test program test-led.c just causes the LED to blink and is part
of the software package (see download at the end of this article).

The analog to digital converter in the microcontroller is used to measure the voltage on the NTC
which will then be converted into a temperature value.

The Atmega8 has two options on what is used as a reference voltage for the analog to digital
converter. It can use either the 5V (AVcc) or an internal 2.56V reference. For the inside
temperatures we will not need a temperature range which is as big as for the outside sensor. +10’C

NTCs are small and
cheap with

reasonable accuracy

to +40’C should normally be sufficient. We can therefore use the 2.56V reference when we
measure the indoor sensor. This gives very high accuracy as the 1024 possible digital values are
then spread over only 0-2.56V that is we get a resolution of 2.5mV (more accurate than most digital
voltmeters!).

The CD-pin on the RS232 is an input line and it is connected to SDA on the I2C bus. We use it to
read data from the microcontroller. DTR and RTS are output lines. When the PC puts data-bits on
the SDA line then it just toggles DTR. The I2C-master (here the linux PC) controls the SCL (clock)
line. In other words the clock line is an output line on the rs232.

Circuit diagram. Click on the diagram for a more detailed view in PDF.
Note: The LCD display is optional. Just connect nothing if you do not want to use the LCD display.

Putting everything together

When you assemble the circuit then pay attention to the parts where polarity is important:
Electrolyte capactitors, the diode, 78L05, LED and the microcontroller.

Before you solder the microcontroller onto the board you should verify the power supply part. If
this does not work you will not only get incorrect temperature readings but you may also destroy
the microcontroller. Therefore connect external power (e.g a 9V battery) and verify with a
voltmeter that you get exactly 5V on the socket pin of the microcontroller. As a next step connect
the circuit to the rs232 port of your linux PC and run the porgram i2c_rs232_pintest with various
combinations of signals.

i2c_rs232_pintest -d 1 -c 1
i2c_rs232_pintest -d 0 -c 1
i2c_rs232_pintest -d 1 -c 0

This program sets the voltage levels on the RTS (used as SCL, option -c) and DTR (used as SDA,
option -d) pins of the rs232 port. The rs232 port has voltage levels of about +/- 10V. Behind the
Z-diode you should however measure only -0.7 for a logical zero and +4-5V for a logical one.

Insert the microcontroller only after your circuit has passed the above tests.

The complete circuit without LCD display

Using the I2C communication

Download (see references) the linuxI2Ctemp tar.gz file and unpack it. The I2C communication is
implemented in 2 files:

i2c_avr.c -- the i2c statemachine for the atmega8
i2c_m.c -- the complete i2c protocol on the linux side

I have given the atmega8 the slave address "3". To send the string "hello" to the atmega8 you would
execute the following C functions:

address_slave(3,0); // tell the slave that we will send something
i2c_tx_string("hello");
i2cstop(); // release the i2c bus

on the microcontroller side you would receive this "hello" string with
i2c_get_received_data(rec_buf);

Very easy. Reading data from the microcontroller is similar. Look at the file i2ctemp_avr_main.c to

see how it works when the temperature readings are done.

How warm is it?

To compile and load the code for the microcontroller run the following commands from the
linuxI2Ctemp package directory.

make
make load

Compile the two programs i2c_rs232_pintest and i2ctemp_linux

make i2c_rs232_pintest
make i2ctemp_linux

... or just use the pre-compiled versions in the "bin" subdirectory.

To read temperatures simply run:

i2ctemp_linux

... and it will print indoor and outdoor temperatures. To make this data available on a website I
suggest to not directly run i2ctemp_linux from the webserver because the i2c communication is
very slow. Instead run it from a cron job and write from there to a html file. An example script is
included in the README file of the linuxI2Ctemp package.

The LCD display

For the LCD display we use a HD44780 compatible display as it was already used in previous
articles. These displays are very easy to use in combination with microcontrollers because you can
send them ASCII characters.

I use the same LCD driver code as in all previous articles. The files which implement this LCD
driver are lcd.c lcd.h and lcd_hw.h. They are in the package which you can download at the end of
this article. The interface for this code is really easy to use:

// call this once:
// initialize LCD display, cursor off
lcd_init(LCD_DISP_ON);

// to write some text we first clear
// the display:
lcd_clrscr();
lcd_puts("Ok the LCD");
// go to the second line:
lcd_gotoxy(0,1);
lcd_puts("works!");

The software is written such that it works with both 16x2 and 20x2 LCD displays.

There is also a test-lcd.c program which can be use to test the LCD display. After loading the
corresponding test-lcd.hex file into the microcontroller you should see "=OK=" on the display.

The complete circuit with LCD display

The LCD display has a contrast pin. Connecting this pin to GND results in maximum darkness of
the display. The total darkness off the display depends however very much on the make of the
display, the viewing angle and power supply voltage level. A change of 0.2V results already in a
noticeable change of display darkness. In most cases it is quite OK to connect the "CON" pin
directly to GND.

If that gives however a too dark display then add a voltage divider as shown here:

Since the CON pin is normally directly next to the VCC pin the easiest solution is to solder the 10K
resistors directly to the display and insert the 270 Ohm resistor in the wire that goes to the CON
pin.

A little GUI

For those wo would like to have GUI on their desktop I made a really simple gui. It consists just of
2 labels which are used to display the two line output of i2ctemp_linux command (the
i2ctemp_linux is the command which read the temperatures from the circuit via I2C):

Now we have a really cool thermometer. With a lot of possibilities:

You can read the temperature locally from the display
You can have a little GUI on your desktop
You can write values with a cronjob to a log file to get long term statistics

I will now use the rest of this ariticle to explain a bit the internals of the software.

Makeing temperature data available on the web

You should not run i2ctemp_linux directly from the webserver. It is too slow. Instead add a contab
entry which runs a script to generate an appropriate webpage e.g every 15 minutes:

The script to run from contab:

#!/bin/sh
webpagefile=/home/httpd/html/temp.html
echo "<h2>Local temperatures</h2><pre>" > $webpagefile
i2ctemp_linux | sed -e ’s/i=/inside /;s/o=/outside /’ >> $webpagefile
echo "---------" >> $webpagefile
date >> $webpagefile
echo "</pre>" >> $webpagefile

Copy the i2ctemp_linux program to /usr/bin and run the above script e.g from a crontab entry which
looks like this (load a file containing this line with the command crontab):

1,15,30,45 * * * * /the/above/listed/scriptfile

How it works: Analog to digital conversion

The Atmega8 supports two modes. In the continous mode it permanently measures the analog
signals and just triggers an interrupt when the measurement is ready. The application software can
then use this interrupt to quickly copy the result from two registers into a variable.

The other mode is the so called single shot mode. Here only one conversion is done. The single shot
mode is still pretty fast. Including the setup time of the required registers before and the reading out
you can still get 100 conversion per second. This is more than fast enough for us. So we use this
mode because it is easier to use in functional programming. We just call a function and it returns
the ADC values.

The Atmega8 has analog input pins ADC0 to ADC3. In addition to this there are the pins AGND
(analog ground, connected to normal ground), AREF (the reference voltage) and AVCC (connected
to +5V).

During analog to digital conversion the analog signal is compared with AREF. An analog signal
equal to AREF corresponds to a digital value of 1023. AREF can be any external reference between
0 and 5V. Without the use of an external reference you can still do precise conversion by either
using an internal reference (2.56V) or AVCC. What is used is decided in the software via the
REFS0 and REFS1 bits in the ADMUX register.

The analog to digital converter can convert one of the input lines ADC0-ADC3 at a time. Before
you start conversion you have to set bits in the ADMUX register to tell the chip which channel to
use.

A simple analog to digital conversion would then look like this:

unsigned char channel=0; // measure ADC0
int analog_result;

// use internal 2.56V ref:
ADMUX=(1<<REFS1)|(1<<REFS0)|(channel & 0x0f);
// ADCSR: ADC Control and Status Register
// ADPS2..ADPS0: ADC frequency Prescaler Select Bits
// ADEN: Analog Digital Converter Enable, set this before setting ADSC
ADCSR=(1<<ADEN)|(1<<ADPS2);

// start conversion
ADCSR|= (1<<ADSC);
while(bit_is_set(ADCSR,ADSC)); // wait for result
adlow=ADCL; // read low first !!
adhigh=ADCH;
analog_result=((adhigh<<8)|(adlow & 0xFF));

As a software designer you must watch out that you read the lower 8 bits first as the microcontroller
has some locking mechanism to simulate "atomic" reading. After this we have the analog to digital
conversion result available as a number in the analog_result variable. This can the be used
elsewhere in the program. Very easy.

The ADPS register (ADC clock pre-scaler bits) must be set such that the clock frequency divided
by the pre-scale factor is a value between 50 and 200 KHz. The division factor is 2^ADPS (two to
the power of the ADPS bits value). The above setting (ADPS2=1, ADPS1=0, ADPS0=0 = decimal
4 -> 2^4 = 16 -> division factor = 16) is good for a clock frequency of 1MHz.

The Atmega8 has several possibilities for reference voltage selection. The reference voltage is
compared against our analog input voltage. It is the voltage that corresponds to a digital value of
1023.

REFS0=0,
REFS1=0

use external AREF, Internal Vref
turned off

REFS0=0,
REFS1=1

AVCC with optional external
capacitor at AREF pin

REFS0=1,
REFS1=1

Internal 2.56V Voltage Reference
with (optional) external capacitor
at AREF pin

An optional capacitor on the AREF pin can be used to suppress noise and stabilize the AREF
voltage (in case you switch between differnt voltage levels: remember that it needs time to charge
the capacitor).

How it works: I2C communication, Atmega8 part

I explained already in the beginning of this article how this I2C protocol works. Let’s now have a
look at the software. The Atmega8 has hardware support for I2C communication. Therefore you do
not actually need to implement the protocol. Instead you need to implement a state machine. This
tells the Atmega8 what to do next. Here is an example:

An I2C packet with our own slave address was received. The Atmega8 will now call the function
SIGNAL(SIG_2WIRE_SERIAL) with the status code 0x60 (for other events we would get other
codes).

--> We must now set a number of registers to tell the Atmega8 what to do next. In this case we will
tell it: receive the data part and acknowledge it.

When the actual data was received we will get called with status code 0x80.

--> Now we read the databyte and tell the Atmega8 to acknowledge the next data byte if it comes.

When the communication is over we get a status code 0xA0 (stop condition) and we can tell our
application that a complete message was received.

The whole state machine for the I2C slave mode and all possible states are explained in the
datasheet of the Atmega8 on page 183 (see link in reference section at the end of the article).

Transmitting data is very similar. Have a look at the code!

How it works: I2C communication, Linux side

First a word about the hardware. Even though I2C is a bus we only use a point to point connection
between one slave and the Linux PC as I2C master. We can therefore save the pullup resistor as
long as the slave can still pull down the line without causing a short circuit. We just put a 4.7K
resistor into the line.

The voltage levels must be adjusted. The voltage levels on the RS232 side are +/- 10V. This would

be too much for the Atmeag8 but it has also an internal over voltage protection diode. We limit with
the 4.7K resistors the current so much that it is sufficient to relay that protection diode for over
voltage protection.

The Linux I2C software implements basically a complete I2C stack. This is because I wanted to
have a little command line utility which does not need any special library or kernel module. It
should just work on its own.

If you look into the file i2c_m.c (see download) you can see that really every I2C message is build
bit by bit.

To generate the "bits" we must toggle the physical pins on the rc232 interface. This is done with
ioctl calls:

 // set RTS pin:
 int arg=TIOCM_RTS;
 ioctl(fd, TIOCMBIS, &arg);

... or to produce a zero:

 // clear RTS pin:
 int arg=TIOCM_RTS;
 ioctl(fd, TIOCMBIC, &arg);

If you want to port this stack to a different OS then you just change these lines. The rest is plain C
and independent of the operating system.

How to mount the outdoor sensor

The outdoor sensor must be protected properly
against rain (and sun). You can try to wrap it into
some plastic but I don’t recommend this. No matter
how tight you tie it, water will eventually come in
and stay in there. The NTC is quite robust and it
does not matter if it gets a bit humid as long as it
can dry again. Use a up-side down mounted tablet
tube which you leave open at the bottom. This way
any water will be able to get out again.

Conclusion

I am now using the thermometer for 2 years and I really like it because you can read it out directly
on the display and you have the possibility to store all the data on your PC. You can view it there,
draw graphs do statistics. Really cool.

The I2C protocol requires very little extra hardware and is optimized for transmitting or receiving
small amounts of data. That is exactly what we need when we want to communicate with our own
microcontroller hardware. It is really a very nice solution!

References

Software, documents and future updates: Download page for this article

shop.tuxgraphics.org the online shop where you can get all the needed components.

The old 2005 articles (this article is based on those and replaces them):
2005-02: A digital thermometer or talk I2C to your atmel microcontroller

2005-03: Part 2 -- A digital thermometer or talk I2C to your atmel microcontroller

<--, tuxgraphics
Home

Go to the index
of this section

© Guido Socher, tuxgraphics.org

2007-05-14, generated by tuxgrparser version 2.55

